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a b s t r a c t

An explicit/implicit domain decomposition method is applied to the time-dependent heat-
conduction problem in a 2-d, strongly anisotropic medium (a magnetised plasma), using a
formulation of the spatial derivatives which avoids the pollution of perpendicular by par-
allel heat fluxes. The time-stepping at the sub-domain boundaries is done using a DuFort–
Frankel scheme, which leads to a time step limit given not by instabilities, but by the
damping rate of numerical oscillations driven by inconsistencies in the formulation of ini-
tial conditions or the temporal variations in the true physical solution. These limitations
can be minimized, however, by aligning the subdomain boundaries as much as possible
with magnetic flux surfaces. The time step limit depends on the ratio of the implicit grid
spacing to the distance between subdomain boundaries (DuFort–Frankel lines in 2-d, sur-
faces in 3-d).

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The modelling of conductive heat transport in magnetised plasmas is a central theme in thermonuclear fusion research,
rendered highly demanding by the extreme anisotropy of the heat conductivity. In previous papers [1,2] we have outlined
several variants of a numerical scheme which minimizes the pollution of the weak heat fluxes perpendicular to magnetic
field lines, by the potentially much more efficient transport along them (typical ratio of heat conductivities in the core of
a present tokamak experiment v===v? > 1010). In fact this scheme has been successfully applied to realistic situations, like
the 3-d problem of heat transport across magnetic islands and in ergodic layers [3]. In Refs. [1,2] we considered the solution
to the stationary problem, arguing that the same treatment of the spatial derivatives could be used in implicit formulations
of the time-dependent equation. In fact this has been successfully done in Refs. [4,5]. As these solutions sometimes develop
boundary layers – e.g. along the border of magnetic islands – frequently a very high spatial resolution is required, making, at
least in 3-d, the resulting matrices of very demanding or even prohibitive size. At the same time such a fully implicit scheme
is difficult to implement on highly parallel systems.

Recently Yuan and Zuo [6] have analysed a hybrid explicit/implicit algorithm similar to one previously proposed by Black
[7], which naturally decomposes the computational domain into sub-domains. The time evolution at the sub-domain inter-
faces is calculated using a DuFort–Frankel (DF) scheme, and the results used as Dirichlet boundary condition data for the
implicit formulation within the sub-domains. The authors showed this scheme to be unconditionally stable, and presented
results of a sample application to a 1-d problem. Evidently, this algorithm, applied in 2 or 3 dimensions, substitutes one large
by a set of much smaller matrices, and is intrinsically predisposed for domain decomposition. In the present paper we
. All rights reserved.
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combine these ideas with the spatial discretisation of Ref. [1], and apply it to the time dependent, anisotropic heat transport
in 2-d, magnetised plasmas. While the scheme is, as shown by Yuan and Zuo, unconditionally stable, the DF algorithm ap-
plied at the sub-domain boundaries is prone to the excitation of weakly damped oscillations, driven either by rapid varia-
tions in the applied sources, or an inconsistent initialisation of the calculations. These oscillations are, however, much
stronger damped in this case than in a pure DF scheme, and can be controlled, provided the time step is chosen according
to criteria given in the present paper.

2. Mixed implicit–explicit formulation in 2-d geometry

We describe the generalization of the numerical scheme proposed in Ref. [6] to the anisotropic problem of heat conduc-
tion in magnetised plasmas using 2-d cylindrical coordinates ðr; hÞ over a radial interval 0 6 r 6 1. We had used this geom-
etry in Refs.[1,2] to develop and test a spatial discretisation scheme minimizing pollution of the small heat transport
perpendicular to field lines (in this geometry equivalent to flux surfaces) by the much larger one parallel to them. As argued
in Ref. [1] it is expedient to have coordinate lines of one coordinate (here: r) coincide approximately with flux surfaces, which
can be achieved in the general case by aligning the system with the unperturbed field. This had been subsequently imple-
mented in Ref. [3] for a 3-d magnetic field configuration, albeit still based on zero-order circular, cylindrical flux surfaces. In
Ref. [4] the geometry was further generalized to the realistic case of a toroidal plasma with the non-circular unperturbed flux
surfaces, corresponding to an existing tokamak. In the latter case, non-orthogonal coordinates were used, with the unper-
turbed flux surfaces taken as effectively radial coordinate surfaces. Cylindrical coordinates, with 2-d magnetic field config-
urations and finite Br have thus been shown to be a good model system for the numerical treatment of more realistic
problems of anisotropic heat transport.

We focus on the treatment of the electron heat conduction term, and write the temperature evolution equation in the
form
3
2

ne
o

ot
T ¼ �r �~qþ Q ; ð1Þ
with ne being the electron density and Q the heat source, neglecting terms arising from convection and compression heating.
For strongly magnetised plasmas, the main difficulties arise from the term involving the parallel transport in the heat flux
~q ¼ �ne½v==~b~bþ v?ð I
$
�~b~bÞ� � rT: ð2Þ
In our previous papers we considered a fully implicit solution of the heat conduction equation. To reduce the size of the in-
volved matrices, we decompose the computational domain here into Nr sub-domains by introducing domain boundaries at
various radii ri, i ¼ 1;2; . . . ;Nr . Inside these sub-domains, we apply an implicit scheme
3
2

ne
Tnþ1 � Tn

Dt

�����
i;j

¼ �f
~er; 0g
2riDr

ðriþ1=2ð~qnþ1
iþ1=2;jþ1=2 þ~qnþ1

iþ1=2;j�1=2Þ � ri�1=2ð~qnþ1
i�1=2;jþ1=2 þ~qnþ1

i�1=2;j�1=2ÞÞ �
f0;~ehg
2riDh

ð~qnþ1
iþ1=2;jþ1=2

þ~qnþ1
i�1=2;jþ1=2 �~qnþ1

iþ1=2;j�1=2 �~qnþ1
i�1=2;j�1=2Þ þ Q n

ij; ð3Þ
defining the parallel heat fluxes at intermediate grid points following the prescription of Ref. [1].
~qnþ1
jj;iþ1=2;jþ1=2 ¼� nevjj~b � ð~b � rrT þ~b � rhTÞjnþ1

iþ1=2;jþ1=2

¼� nevjjfb
r
; bhgjiþ1=2;jþ1=2

br
iþ1=2;jþ1=2

ðTnþ1
iþ1;jþ1þTnþ1

iþ1;j�Tnþ1
i;jþ1�Tnþ1

i;j
Þ

2ðDrÞI
þ

bh
iþ1=2;jþ1=2

ðTnþ1
iþ1;jþ1þTnþ1

i;jþ1�Tnþ1
iþ1;j�Tnþ1

i;j
Þ

2Dhriþ1=2

0
B@

1
CA ð4Þ
In this and following equations, we add an index I to the radial step size, to indicate the interval between neighbouring
implicitly treated points. At the sub-domain boundaries, the heat conduction equation is solved in an explicit way by
3
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The relevant heat fluxes q0 involved at the sub-domain boundaries are calculated using a generalisation of the DuFort–Fran-
kel scheme:
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Fig. 1. Grid points involved in the computation of the heat fluxes at point ðiþ 1=2; jþ 1=2Þ required for the DuFort–Frankel scheme used along the sub-
domain boundary at r ¼ ri (along the ‘‘DuFort–Frankel line”).
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The grid points involved in the computation are outlined in Fig. 1. NDF implicit intervals ðDrIÞ are between adjacent DF-
points, so that at constant spatial resolution ðDrIÞ the number of subdomains will scale like N�1

DF . As in our previous papers,
all heat fluxes are defined in the intermediate grid point, whereas temperatures are defined in integer grid points. This treat-
ment ensures that no strong pollution of the perpendicular heat flux is caused by the parallel one even for large values of
vjj=v? and non-aligned magnetic coordinates as already proven for the full implicit scheme developed in Refs. [1,2]. The solu-
tion at the sub-domain boundaries gives the Dirichlet boundary condition applied for the implicit scheme in the sub-domain
interior.

Eqs. (1)–(5) are written in the form of Refs. [1,2] to highlight how variable coefficients enter the difference formulation. In
the following we chose a normalisation dropping the 3/2 in front of the temperature time derivative, and set ne ¼ const: ¼ 1.
For 2-d calculations in the ðr; hÞ-plane, we define the magnetic field through a flux function

~B ¼~ez �rw, which for the 2-d test applications in this paper is given by
wðr; hÞ ¼ ðr � rsÞ2 þ 0:005r2ð1� r4Þ cos h; ð7Þ
resulting in a magnetic island at the rational surface rs (=0.7). We use Tðr ¼ 1; h; tÞ ¼ 0, Tðr; h; t ¼ 0Þ ¼ 0 as boundary and ini-
tial condition and – for the reference case – a source given by Q ¼ 4ð1� r2Þ8 tanhðt=ssÞ. The ramping-up of the source, with a
time-constant ss is imposed so that the additional unphysical condition on oT=ot (taken as = 0) needed to initiate the algo-
rithm in the DF-points, is consistent with the actual solution of the problem.

For the reference case, shown in Figs. 2 and 3 we chose v===v? ¼ 107, keeping in mind that in a 2-d simulation this param-
eter is an effective value, related to the true one by the relation ðv===v?Þ2d ¼ ðv===v?Þ3d � ðB

2
r þ B2

h Þ=ðB
2
r þ B2

h þ B2
z Þ, and hence to

be taken more than two orders of magnitude smaller to simulate tokamak conditions [2]. The implicit step sizes are taken as
ðDrÞI ¼ 0:0033 and ðDhÞI ¼ 0:025, with NDF ¼ 15, and a time step Dt ¼ 0:003. The spatial resolution is needed to reproduce
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Fig. 2. Temperature contours for the asymptotic solution ðt ¼ 3:9Þ of our reference case, in a projection on a plane r; h system.
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the sharp transition zone at the island boundary. Fig. 2 shows the isocontours of temperature in the asymptotic state,
whereas Fig. 3 shows radial profiles through the O-point of the island, during the build-up and at a late (asymptotic) state.

3. Constraints on the utilizable time-step

The above and several other test cases showed that the mixed scheme of Ref. [6] can indeed be implemented in a satis-
factory way also in more than one dimension, to solve the strongly anisotropic heat conduction problem in magnetic fields.
The generally known drawbacks of the DF scheme, and the adjustable parameters of the above mixed scheme ðDxÞI;Dt, but in
particular NDF, however, made extensive numerical tests mandatory. To guide our understanding and to arrive at a scaling of
the useable time steps Dt supported by an at least heuristic model, we explored also more extensively the 1-d situation, al-
ready discussed in the paper of Yuan and Zuo [6].

The DuFort–Frankel scheme for the heat conduction equation is known to be unconditionally stable for proper boundary
conditions. Yuan and Zuo [6] have shown that this general property holds also for the combined DF-explicit, implicit scheme.
In practice, however, the DF method is known to suffer from the danger of the excitation of weakly damped oscillations, e.g.
by too rapidly varying sources or by inconsistent initial conditions. Related to this is the fact that the DF scheme modifies the
basic type of the partial differential equation, introducing a hyperbolic term vanishing only for ðDt=DxÞ ! 0. We show in
the following that the mixed scheme of Ref. [6] has indeed much superior properties. To illustrate this, we consider at
first the 1-d analogue to our 2-d problem, solving the standard heat conduction equation in the form
Fig. 4.
o

ot
T ¼ v1

r
o

or
r

o

or
T þ Q=ne; ð8Þ
with v ¼ 1, the same source distribution and initial and boundary conditions as above, albeit necessarily with only a perpen-
dicular heat conductivity, and no equivalent of magnetic islands. Similar to the above case (for the reasons discussed in the
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subsequent section) we ramp-up the source with a time-function � tanhðt=ssÞ. For a too large time step (Fig. 4) the true solu-
tion Tðr; tÞ is overlaid by a damped temporal oscillation eT ðr; tÞ, with a radial scale length�1 (Fig. 5). Closer inspection reveals,
however, that the function eT ðr; tÞ actually constitutes a polygon in r, with pivots in the DuFort–Frankel points. This behaviour
can be understood from an inspection of the PDE’s obtained as differential approximations to the difference schemes [8],
which take the form
o

ot
T ¼ v o2

ox2 T � v Dt
ðDxÞI

� �2
o2T
ot2 ð9Þ
for the case of the DF-scheme, and
o

ot
T ¼ v o2

ox2 T þ Dt
2

v o

ot
o2T
ox2 ; ð10Þ
for the implicitly treated regions. (To focus on the essentials, we carry-out this discussion, as well as the analysis given in the
Appendix in plane geometry, and ignore the source terms).

In the mixed formulation described in Section 2, Eq. (9) is solved in the region xDF;i � ðDxÞI=2 6 x 6 xDF;i þ ðDxÞI=2 around
each DF point xDF;i, whereas Eq. (10) is solved in the remainder of the computational domain. Defining a function gðxÞ as 1
inside and 0 outside the region of validity of (9), the perturbation eT ðx; tÞ has to satisfy an equation of the form
o

ot
eT ¼ v o2

ox2
eT � gðxÞv Dt

ðDxÞI
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o2

ot2
eT þ ð1� gðxÞÞDt
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v o
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o2eT
ox2 � gðxÞv Dt
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� �2
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ot2 T þ ð1� gðxÞÞDt
2

v o
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where the last two terms describe the drive of the oscillations by the time-variation of the true solution Tðx; tÞ.
In the Appendix we describe a semi-heuristic method by which we use the observed spatial structure of the perturbations

in our numerical experiment to derive a time-dependent solution for the homogeneous part of Eq. (11), which predicts a
behaviour eT ðx; tÞ � GðxÞ � ectþixt , with
c ¼ �c1
ðDxÞ2I NDF

2vðDtÞ2

x ¼ c2
ðDxÞI

ffiffiffiffiffiffiffiffi
2NDF

p
‘ðDtÞ ;

ð12Þ
with ‘ a characteristic spatial scale of the perturbation (in the case of the mode observed in Fig. 5, the total extent of the
computational region) and c1; c2 constants of Oð1Þ. For comparison, a spectral mode ansatz for the perturbation in terms
of a spatial wave-number k for a pure DF-scheme would yield:
cDF ¼ �
ðDxÞ2DF

2vðDtÞ2

x ¼ ðDxÞDFk
ðDtÞ :

ð13Þ
Comparing the two expressions (in particular those for the damping rate �c), one should note that the requirement to re-
solve a certain spatial scale will impose a fixed ðDxÞI , whereas the number of subdomains will be a parameter to optimize,
taking into account a given computer architecture. For a fixed time step and a given spatial resolution the rate of damping
will therefore be larger by a factor NDF for the hybrid scheme than for the pure DF treatment.

The scaling of damping rate and oscillation frequency implied by Eq. (12) are very well reproduced by our numerical tests
carried out in 1-d, but holds approximately also in 2-d simulations. Figs. 6 and 7 show, for the 1-d case, the excellent agree-
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ment of the scaling of the characteristic frequency and damping rate of these perturbations with the predictions of Eq. (12).
In the case of the damping rate, this agreement extends also to the numerical value; the measured frequencies are uniformly
about 40% higher than those predicted by Eq. (12) for ‘ � 1. This is not surprising, as the spatial structure of the perturbation
is not exactly a parabola (as assumed in the Appendix) and the analytic expression obtained there also refers to a plane
geometry. The predicted damping rate, on the other hand, does not even depend on the spatial scale of the perturbation
and should therefore also be more robust with regard to its detailed structure.

In 2-d, the role of anisotropy v===v?, and the dependence of the solution on the structure of the magnetic field~Bðr; hÞ com-
plicate the matter. Also here, for too large time-steps, oscillations appear (Fig. 8). They have a more complex time-behaviour,
as evidently the larger number of degrees of freedom allows for more than one oscillation mode to be excited. The spatial
structure of the perturbation (Fig. 9: isocontours of eT ðr; h; t ¼ 3:9Þ, obtained as difference between the solutions with
Dt ¼ 3 � 10�3 and 5 � 10�4, respectively at this instance) closely resembles that of the true solution (Fig. 2). This similarity
is illustrated more quantitatively by radial cuts of eT ðr; h; t ¼ 3:9Þ, through the O- and X-points of the island (Fig. 10), which
manifest also the polygonal structure. We carried out again a variety of numerical simulations testing the scaling of damping
rate and oscillation frequency of these perturbations, with results shown in Figs. 11–14. For applying the Eq. (12) we had to
define a reference heat conductivity, which we took as the spatial maximum of vref ¼maxð1þ ðbrÞ2ðv===v?ÞÞ. The latter
quantity appears as coefficient of the second time derivative in the 2-d generalisation of Eq. (11), making it clear also
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why the DuFort–Frankel treatment should be with respect to a coordinate perpendicular to the unperturbed flux surfaces. (A
further profit should accrue if DuFort–Frankel surfaces can be placed on still intact flux surfaces, like KAM-surfaces). As can
be seen the damping rates still scale in reasonable agreement with Eq. (12), with a somewhat weaker dependence on v===v?,
which is, however, to be expected as over large parts of the computational region the actual value of vref stays closer to 1. A
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stronger deviation is observed for the oscillation frequency, which according to Eq. (12) should be independent of vref , but is
found to scale � v�0:4

ref . This is presumably due to the fact that the 2-d structure of the solution (and also the perturbation)
gets increasingly more pronounced with increasing v===v?.

The above tests refer to cases, in which the time variation of the true, physical solution of Eq. (1) drives the numerical
oscillations, with a spatial distribution given either by the global scale, or – in case of the sudden switch-on of a spatially
more restricted source (in practice, e.g. the application of ECRH-heating) – a smaller scale ‘. The best confirmation of the
range of applicability of the expressions Eq. (12) was, however, obtained by 1 and 2-d runs with improper initialisation, tak-
ing, from the very beginning of the calculations a finite source strength Qðr; tÞ, but initiating the DF points with
TðrDF;j; h;�DtÞ ¼ TðrDF;j; h;0Þ ¼ 0. This led to strong oscillations with a characteristic dimension ‘ � ðDrÞDF, with the same
damping rate as the global oscillations, but a frequency scaling now like x � ðDtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDrÞI=ðDrÞDF

p
.

One remarkable property of Eq. (12) is the fact that the damping rate for the induced numerical oscillations is indepen-
dent of their spatial scale. This implies that the problem will lead to more severe time-step limitations if smaller scale phys-
ical variations are to be resolved. As practical criterion we can formulate that the damping of numerical oscillations should
be on a shorter time-scale than the physical one. Taking – for a physical perturbation on a scale ‘ the associated physically
relevant time scale as s‘ � ‘2=v, this requests:
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�cs‘ � c1
ðDxÞIðDxÞDF‘

2

2v2ðDtÞ2
> 1, which can be reformulated as a time-step criterion:
Dt <
ðDxÞI‘

v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

2
NDF

r
: ð14Þ
Another form of a time-step criterion can be derived by demanding that the oscillations excited with a spatial scale ‘ should
be critically damped: using the expressions of Eq. (12) this requirement �c=x > 1 takes – up to a factor

ffiffiffiffiffi
c1
p

=ð2c2Þ- again the
same form as Eq. (14).

To test this conclusion numerically in the 1-d case we imposed a source that produces asymptotically a spatially localized
temperature distribution Tðr; t !1Þ ¼ e�ðr�0:5Þ2=r2 . Taking for this case and ðDrÞI ¼ 0:0025;NDF ¼ 40 a time-step Dt ¼ 10�3,
which would be sufficient to produce a monotonic approach to the asymptotic solution for the model source distribution
used in the earlier tests, yields a temporal behaviour of Tð0; tÞ with a strong oscillation overlaid to the physical excursion
(Fig. 15). An oscillation persists also for a time-step reduced by a factor of 2; a time step of 1/4th of the original one suffices,
however, to give essentially the physically correct solution, approximately in agreement with the ratio of the space-scales of
the dominating perturbations for the two cases (Figs. 5 and 16). For ramp-up rates exceeding a few (less than 10) Dt, these
oscillations do not depend on the rate of rise of the source.

Expression Eq. (12) explains also the particular importance of a consistent start-up of the calculations. As the DF points
require a specification also of the time derivative of Tðr; h; t ¼ 0Þ, any specification not consistent with the actual solution
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excites a perturbation with a spatial scale ‘ � NDFðDrÞI , posing a rather stringent requirement for critical damping. Our meth-
od – to start with Tðr; h; t ¼ 0Þ ¼ 0, oTðr; h; t ¼ 0Þ=ot ¼ 0, and to ramp-up the source from initially uniformly zero to its in-
tended value within a few Dt was, however, very successful in eliminating this problem. It is in fact, of more general
applicability than might appear apparent. Due to the linearity of the problem, it can be applied to start-up with any initial
distribution Tðr; h; t ¼ 0Þ ¼ Toðr; hÞ for any source distribution Qðr; h; tÞ, by obtaining first, through differentiation, a fictitious
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source Q sðr; hÞ, satisfying the stationary heat conduction equation for Toðr; hÞ and applying the algorithm described in this
paper, using a source Q s þ ðQ � Q sÞ � tanhðt=ssÞ. Evidently, in that case, oTðr; h; t ¼ 0Þ=ot ¼ 0 gives an initialisation in the
DF-points consistent with the actual solution of the PDE.

4. Conclusions

We have shown that the mixed explicit/implicit scheme proposed by Yuan and Zuo can be successfully combined with
the spatial discretisation of Günter et al. for the solution of 2-d, strongly anisotropic heat conduction problems, provided cer-
tain constraints on the time step are respected. We expect this to hold also in 3-d, and efforts for the practical implemen-
tation into the code described in Refs. [3,5] are under way. The method breaks the original coefficient matrix for the solution
at the new time-step, with � 27 � Nx � Ny � Nz non-vanishing entries, into Nx=NDF matrices with each � 27 � NDF � Ny � Nz ele-
ments, leaving the total number of elements approximately constant, but evidently facilitating their distribution and parallel
solution on several nodes. The method appears ideally suited for problems of perturbed, magnetically confined plasmas,
where a fully implicit treatment on the nested magnetic surfaces of the original equilibrium configuration can be combined
with a mixed implict–explicit treatment along the coordinate perpendicular to them. The method is unconditionally stable,
but imposes a time-step constraint of the type
ðDtÞmax /

ðDxÞI‘
veff

ffiffiffiffiffiffiffiffi
NDF
p

to avoid spurious oscillations of the solution, where veff is an effective heat conductivity perpendic-
ular to the boundaries of the fully-implicitly treated subdomains. It is approximately given by veff ¼ v?ð1þ ðbrÞ2ðv===v?ÞÞ,
and illustrates also the benefit derived from an approximate alignment of the subdomain boundaries with the unperturbed
flux surfaces.

Appendix

To obtain practical guidance for the choice of the time-step Dt and the number of DF points, lines or surfaces, respectively
in 1, 2, or 3 dimensions, we need to relate these parameters to the observed temporal oscillations. The heuristic analysis de-
scribed below refers to a 1-d situation, and derives the justification of its use in the more general 2-d case from the numerical
tests and the comparison of their results.

We start from the homogenous part of Eq. (11)
o

ot
eT � v o2

ox2
eT þ gðxÞv Dt

Dx

� �2
o2

ot2
eT � ð1� gðxÞÞDt

2
v o

ot
o2eT
ox2 ¼ 0; ðA1Þ
with the definition of gðxÞ given in Section 3. We apply separation in time and investigate a particular spatial perturbation
with a global scale-length ‘, using the numerical observation of eT ðx; tÞ taking the spatial shape of a polygon with vanishing
o2

ox2
eT over the region with g ¼ 0. We therefore make an ansatz eT ðx; tÞ ¼ eT oðtÞ � GðxÞ, with GðxÞ defined as polygon, with pivots

in the DF-points, given by GðxDF;jÞ ¼ ð1� ðxDF;j=aÞ2Þ. This corresponds approximately to the oscillating perturbation in Fig. 5.
We use the function GðxÞ now also as trial function in a Galerkin approach, multiplying Eq. (A1) with it and integrating over
the interval ½0; a�. Evaluating the first and second terms gives only ððDxÞDF=aÞ2-corrections to the expressions for the contin-
uous function ð1� ðx=aÞ2Þ. The fourth term vanishes for the chosen trial function. The essential features of the DF enter
through the third term, whose contribution is attenuated, however, by the small interval around the DF points over which
gðxÞ–0. By this procedure, the PDE (A1) becomes a second order DE in time
2
3
v Dt
ðDxÞI

� �2 ðDxÞI
ðDxÞDF

� �
a

d2

dt2
eT o þ

2
3

a
d
dt
eT o þ

4
3

aeT o ¼ 0
describing a damped oscillation eT oðtÞ � ectþixt with
c ¼ �ðDxÞI � ðDxÞDF

2vðDtÞ2
and a frequency given – in the most relevant case of Dt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxÞIðDxÞDF

p
2
ffiffi
2
p

v – by
x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðDxÞI � ðDxÞDF

p
aðDtÞ :
The above procedure – using the approximate spatial form of the numerically found dominating perturbation as a trial func-
tion to construct a Galerkin procedure – can be applied also to other perturbations, excited, e.g. by a bad initialisation of the
DF points. The resulting expressions for damping rates and frequencies take the general form
c ¼ �c1
ðDxÞI �ðDxÞDF

2vðDtÞ2
;

x ¼ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðDxÞI �ðDxÞDF

p
‘ðDtÞ ;
already described in the text, with ‘ the characteristic space scale of the perturbation. Common to all the perturbations is
their nearly polygonal form, with straight sections connecting the DF points.
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